Reception Calculations	
Key vocabulary Place value and number -tens, ones, equal, same as, more, less, digit, calculation, odd, even Addition - add, count on, altogether, total Subtraction - subtract, take away, count back Multiplication - groups of, lots of, double Division - sharing, half, halve	
Addition	Subtraction
Modelling and Methods - Children counting amounts within 10 using concrete objects (moving onto pictorial). - Children find one more than a concrete/pictorial amount. - Children investigate 'ways to make' by counting an amount and splitting in different ways. - Children combine two sets of concrete amounts and count total (moving onto pictorial). - Addition sign is introduced to combine sets of amounts and children are encouraged to use mathematical vocabulary. Add two amounts (within 10) using fingers. - Children add by 'counting on'. - Children will use number lines to identify one more and to answer calculations. - Children will begin to understand 'number stories' and record calculation alongside this, using preferred	Modelling and Methods Children count backwards. - Children count amounts within 10 using concrete objects then find one less by removing an objec \dagger (moving onto pictorial). - Children count out a set of objects and remove a set amount to take away. - Children move onto pictorial and cross out what they are taking away. - Children are introduced to the subtraction sign and begin recording calculations. $5-3=$ - Children use fingers to count backwards. - Children subtract by 'counting back'. - Children will begin to use number lines to identify one less and to answer calculations. - Children will begin to understand 'number stories' and record calculation alongside this, using preferred method to solve: "I have 8 sausages and my dog eats 3 , how many do I have left?" $8-3=5$

method to solve: "I have 3 sweets and I get 4 more, how many have I got altogether?" $3+4=7$

Multiplication

- Children will experience groups of equal amounts.
- Children will count in 10's.
- Children will count in 2's
- Children will use concrete/pictorial representations to count in 2 's and recognise pairs.

- Children will begin to understand the concept of doubling and use concrete objects to find doubles within 20.

Division

- Children will understand the concept of half and use practical objects to find half - understanding it is fair, equal and 'the same as'.
- Children find half of amounts by splitting concrete objects practically. They will begin to recognise that we can't split some amounts equally. They will be able to say half of \qquad is _.
- Children will experience dividing as sharing equally. They will do this practically sharing objects with peer/teddies/teacher etc. They will share amounts equally between more than 2 .

Year 1 Calculations

Key vocabulary

Place value and number - hundreds, tens, ones, equal, same as, more, less, digit, calculation, partitioning, partition, odd, even
Addition - add, sum, plus, count on, altogether, total
Subtraction - subtract, take away, count back, finding the difference
Multiplication - multiply, times, lots of, groups of, double, array, commutative, repeated addition
Division - sharing, grouping, divided by, dividing, half, halve, jotting

Addition
Children need to understand the concept of equality before using the ' $=$ '
sign.
Calculations should be written either side of the equality sign so that the sign is not just interpreted as 'the answer'.

Introduce the children to the understanding that ' $=$ ' means 'the same as'.

$$
\begin{gathered}
2=1+1 \\
2+3=4+1 \\
3=3 \\
2+2+2=4+2
\end{gathered}
$$

Missing numbers need to be placed in all possible places.

$$
\begin{array}{ll}
3+4=\square & \square=3+4 \\
3+\square=7 & 7=\square+4 \\
\square+4=7 & 7=3+\square \\
\square+\nabla=7 & 7=\square+\nabla \\
& \\
\text { Modelling and Methods }
\end{array}
$$

= signs and missing numbers

Missing numbers need to be placed in all possible places.

$7-3=\square$	$\square=7-3$
$7-\square=4$	$4=\square-3$
$\square-3=4$	$4=7-\square$
$\square-\nabla=4$	$4=\square-\nabla$

Calculations should be written either side of the equality sign so that the sign is not just interpreted as 'the answer'.

Modelling and Methods

- Taking away concrete objects.
- Counting backwards on fingers.
- Jumping backwards on number line.

- concrete objects
- 'counting on' on fingers
- Jumping forward on number line $\quad \rightarrow$
- 100 square

- Partitioning
- Partitioning on 100 square
(jumping down in tens and forwards in ones)
Introduce 'finding the difference' and find the difference by finding two numbers on number line and counting jumps in between.
- Apply both these skills on a 100 square.
- Subtract using partitioning.
- Partitioning on a 100 square (jumping up in tens and back in ones)

Year 2 Calculations

Key Vocabulary

All vocabulary as in Year 1 plus
Place value - > greater than, < less than
Addition/Subtraction - inverse, commutative, associative, column addition, column subtraction,
Multiplication/Division - column multiplication, bus-stop method, written method for division, remainder

quations as in Year 1 but with a

extend to balancing equations
$14+5=10+\square$
$32+\square+\square=100 \quad 35=1+\square+5$
Calculations should have missing numbers and $=$ in all possible places for varied

fluency.

Modelling and Methods

$$
\text { Jumping forward on a } 100 \text { square }
$$

- Partitioning on a 100 square (down in tens and forward in ones)
- Partitioning on a numberline

- Partitioning using part-whole model for missing numbers and relationship to subtraction and the inverse.

When adding 3 single-digit numbers pupils are taught they are associative
$3+2+1=6(3+2=5+1=6)(3+1=4+2=6) \quad(1+2=3+3=6$)

- Pupils are introduced to the formal written method of column addition.

Subtraction

= - signs and missing numbers

Continue using a range of equations as in Year 1 but with appropriate numbers.
Extend to $14+5=20-\square$
Calculations should have missing numbers and $=$ in all possible places for varied fluency.

> Modelling and Methods

- Jumping backwards on a 100 square
- Partitioning on a 100 square (up in tens and backwards in ones)
- Partitioning on a numberline counting backwards - inverse to addition

Finding the difference

Find a small difference by counting up $43-39=$

Find the difference and look at relationship between -/+
$55-27=28 \quad 27+?=55 \quad 55-?=27$

$$
?+27=55
$$

- Pupils are introduced to the formal written method of column subtraction.

Children will be given opportunities to apply their understanding of methods in problem solving and reasoning scenarios.	Children will be given opportunities to apply their understanding of methods in problem solving and reasoning scenarios.
Multiplication	Division
$\underline{x}=$ signs and missing numbers	$\dot{\ddagger}=$ signs and missing numbers
$7 \times 2=\square{ }^{\text {a }}$	$6 \div 2=\square \quad \square=6 \div 2$
$7 \times \square=14 \quad 14=\square \times 7$	$6 \div \square=3 \quad 3=6 \div \square$
$\square \times 2=14 \quad 14=2 \times \square$	$\square \div 2=3 \quad 3=\square \div 2$
$\square \times \nabla=14 \quad 14=\square \times \nabla$	$\square \div \nabla=3 \quad 3=\square \div \nabla$
Modelling and Methods	Modelling and Methods
- Repeated edition	Sharing
Arrays - Children solve multiplication calculations by drawing their	- Children share out total amount in relevant multiples using jottings as previously.
own arrays using times tables that are relevant to year group (2's, 5 's, 10 's, 3 's and extension to 4 's)	Grouping
- Children are encouraged to count in multiples rather than counting individual dots within arrays. - Children are introduced to the formal written method for	- Counting in groups of until total is found (in relevant multiples). $15 \div 5=3$
multiplication (2-digit x 1-digit number - no carrying)	$\rightarrow+B$
Children will be given opportunities to apply their understanding of methods in problem solving and reasoning scenarios.	Children are introduced to the formal written method for division - referred to as the 'bus-stop method' but also labelled formal written method.
	- Children should divide by relevant times tables to year group. Introduce concept of a remainder when dividing (still no carrying). This is recorded as r $16 \div 3=5 \mathrm{rl}$
	Children will be given opportunities to apply their understanding of methods in problem solving and reasoning scenarios.

Year 3 Calculations

Key vocabulary

Place value and number - thousands, hundreds, tens, ones, equal, same as, more, less, digit, calculation, partitioning, partition, inverse Addition - add, sum, plus, count on, altogether, commutative, associative, column addition, written method, carrying, total, sum Subtraction - subtract, take away, count back, column subtraction, written method, exchanging Multiplication - multiply, times, lots of, groups of, double, array, commutative, carrying, product

Division - divided by, dividing, bus-stop, written method, carrying

larger numbers.
Calculations should have missing numbers and = in all possible places for varied fluency.

Modelling and Methods
All children should be using the formal written method of column subtraction.

Also include: 2-digit - 2-digit, 2-digit - 1-digit and 3-digit - 2-digit (including exchanging) to ensure secure understanding of place value.

Children will be given opportunities to apply their understanding of methods in problem solving and reasoning scenarios.

Year 4 Calculations	
Place value and number - ten thousands, thousands, hundreds, tens, ones, equal, same as, more, less, digit, calculation, partitioning, partition, inverse Addition - add, sum, plus, count on, altogether, commutative, associative, column addition, written method, carrying, total, sum Subtraction - subtract, take away, column subtraction, written method, exchanging Multiplication - multiply, times, lots of, groups of, double, commutative, carrying, product Division - divided by, dividing, bus-stop, written method, carrying, divisor	
Addition	Subtraction
$+=$ signs and missing numbers Continue using a range of equations as in previous years but with appropriate, larger numbers. Calculations should have missing numbers and = in all possible places for varied fluency. Modelling and Methods All children should be using the formal written method of column addition. Also include: 3-digit + 2-digit, 4-digit + 3-digit and 4-digit + 2-digit (including carrying) to ensure secure understanding of place value. Ensure children are aware of the commutative and associative properties of addition when solving calculations. Children use the inverse to solve problems and check answers. Children will be given opportunities to apply their understanding of methods in problem solving and reasoning scenarios.	- = signs and missing numbers Continue using a range of equations as in previous years but with appropriate, larger numbers. Calculations should have missing numbers and $=$ in all possible places for varied fluency. Modelling and Methods All children should be using the formal written method of column subtraction. Also include: 3-digit - 2-digit, 4-digit-3-digit and 4-digit - 2 -digit (including exchanging) to ensure secure understanding of place value. Ensure children are aware that subtraction is not commutative. Children use the inverse to solve problems and check answers. Children should solve calculations with a mixture of different digits to ensure secure place value understanding. Children will be given opportunities to apply their understanding of methods in problem solving and reasoning scenarios.
Multiplication	Division

$x=$ signs and missing numbers

Continue using a range of equations as in previous years but with
appropriate, larger numbers.
Calculations should have missing numbers and $=$ in all possible places for varied fluency.
Modelling and Methods
All children should be using the formal written method of column multiplication. Children should multiply by any single digit.

Ensure children are aware of the commutative properties of multiplication when solving calculation. Children use the inverse to solve problems and check answers.

Children will be given opportunities to apply their understanding of methods in problem solving and reasoning scenarios.

$\dot{\ddagger}=$ signs and missing numbers

Continue using a range of equations as in previous years but with appropriate, larger numbers.

Calculations should have missing numbers and =in all possible places for varied

 fluency.Modelling and Methods
All children should be using the formal written method for division - short division (bus stop method). Children should divide by any single digit.

Ensure children are aware that division is not commutative. Children use the inverse to solve problems and check answers.

Children will be given opportunities to apply their understanding of methods in problem solving and reasoning scenarios.

Year 5 Calculations

Key vocabulary

Place value and number - millions, hundred thousands, ten thousands, thousands, hundreds, tens, ones, tenths, decimal, equal, same as, more less, digit, calculation, partitioning, partition
Addition - add, sum, plus, count on, altogether, commutative, associative, column addition, written method, carrying, total, sum Subtraction - subtract, take away, count back, inverse, column subtraction, written method, exchanging Multiplication - multiply, times, lots of, groups of, double, commutative, carrying, product, factor, scale
Division - divided by, dividing, bus-stop, written method, carrying, remainders, tenths, dividend, divisor, decimal place, fraction, rounding
Addition

Continue using a | $\boldsymbol{+ = s i g n s ~ a n d ~ m i s s i n g ~ n u m b e r s ~}$ |
| :---: |
| range of equations as in previous years but with |
| appropriate, larger numbers. |

Calculations should have missing numbers and $=$ in all possible places for vari appropriate, larger numbers.
Calculations should have missing numbers and $=$ in all possible places for varied fluency.
Modelling and Methods
All children should be using the formal written method of column addition.

Ensure children are aware of the commutative and associative properties of addition when solving calculations. Children use the inverse to solve problems and check answers. Children should solve calculations with a mixture of different digits to ensure secure place value understanding.
Children will be given opportunities to apply their understanding of methods in problem solving and reasoning scenarios.

Subtraction

- = signs and missing numbers

Continue using a range of equations as in previous years but with appropriate, larger numbers. Calculations should have missing numbers and $=$ in all possible places for varied fluency.

Modelling and Methods
All children should be using the formal written method of column subtraction.

Ensure children are aware that subtraction is not commutative. Children use the inverse to solve problems and check answers. Children should solve calculations with a mixture of different digits to ensure secure place value understanding.

Children will be given opportunities to apply their understanding of methods in problem solving and reasoning scenarios.

Year 6 Calculations

Key vocabulary

Place value and number - millions, hundred thousands, ten thousands, thousands, hundreds, tens, ones, tenths, decimal, equal, same as, more less, digit, calculation, partitioning, partition
Addition - add, sum, plus, count on, altogether, commutative, associative, column addition, written method, carrying, total, sum Subtraction - subtract, take away, count back, inverse, column subtraction, written method, exchanging
Multiplication - multiply, times, lots of, groups of, double, commutative, carrying, product, factor, scale
Division - divided by, dividing, bus-stop, written method, carrying, remainders, tenths, dividend, divisor, quotient, decimal place, fraction, long division, rounding
Addition

Continue using at $=$ signs and missing numbers appropriate, larger numbers.
Calculations should have missing numbers and $=$ in all possible places for varied
fluency.

Modelling and Methods with
column addition.

Ensure children are aware of the commutative and associative properties of addition when solving calculations. Children use the inverse to solve problems and check answers. Children should solve calculations with a mixture of different digits to ensure secure place value understanding.

Children will be given opportunities to apply their understanding of methods in problem solving and reasoning scenarios.

Subtraction

$==$ signs and missing numbers

Continue using a range of equations as in previous years but with appropriate, larger numbers. Calculations should have missing numbers and $=$ in all possible places for varied fluency.

Modelling and Methods
All children should be using the formal written method of column subtraction.

Ensure children are aware that subtraction is not commutative. Children use the inverse to solve problems and check answers. Children should solve calculations with a mixture of different digits to ensure secure place value understanding.

Children will be given opportunities to apply their understanding of methods in problem solving and reasoning scenarios.

Multiplication	Division
$x=$ signs and missing numbers Continue using a range of equations as in previous years but with appropriate, larger numbers. Calculations should have missing numbers and $=$ in all possible places for varied fluency. Modelling and Methods All children should be using the formal written method of column multiplication. Ensure children are aware of the commutative properties of multiplication when solving calculation. Children use the inverse to solve problems and check answers. Children will be given opportunities to apply their understanding of methods in problem solving and reasoning scenarios.	$\dot{\ddagger}=$ signs and missing numbers Continue using a range of equations as in previous years but with appropriate, larger numbers. Calculations should have missing numbers and $=$ in all possible places for varied fluency. Modelling and Methods All children should be using the formal written method for division. Answer: $45 \frac{1}{11}$

